Review - Artificial Intelligence Based Modelling of Hydrological Processes
نویسندگان
چکیده
Hydrological processes such as runoff and contaminant transport are usually affected by various complex interrelated variables. Moreover, uncertainties in variables estimate are the common stamp of these processes. Due to this complex nature, Physical modeling of any hydrological system requires availability of large, accurate and detailed data related to all influencing variables, which are not always available due to financial and technical constraints. This may lead to deficiencies in model’s performance which in turn, negatively affect hydrological planning and policy drawing. To address these shortcomings, artificial intelligence (AI) based techniques have been recently used as alternative tools to traditional physical hydrological models. These techniques have been proved to be successful and effective in tackling wide spectrum of challenging hydrological processes. This article is intended to serve as an introductory review of application of two AI techniques namely, artificial neural networks (ANNs) and support vector machine (SVM) in various hydrological applications. In this article, ANNs and SVM theoretical background coupled with their strength points that make them suitable for hydrological modeling were briefly described. Moreover, various examples of successful applications of ANNs and SVM for modeling different hydrological processes were also provided.
منابع مشابه
Monthly runoff forecasting by means of artificial neural networks (ANNs)
Over the last decade or so, artificial neural networks (ANNs) have become one of the most promising tools formodelling hydrological processes such as rainfall runoff processes. However, the employment of a single model doesnot seem to be an appropriate approach for modelling such a complex, nonlinear, and discontinuous process thatvaries in space and time. For this reason, this study aims at de...
متن کاملRainfall-runoff modelling using artificial neural networks (ANNs): modelling and understanding
In recent years, artificial neural networks (ANNs) have become one of the most promising tools in order to model complex hydrological processes such as the rainfall-runoff process. In many studies, ANNs have demonstrated superior results compared to alternative methods. ANNs are able to map underlying relationship between input and output data without prior understanding of the process under in...
متن کاملAn Overview of the Artificial Intelligence Applications in Identifying and Combating the Covid-19 Pandemic
Intruduction: In late 2019, people around the world became infected with Covid-19 by the outbreak, the pandemy and epidemy of this disease. To this end, researchers in various fields are seeking to find solutions to the problems related to the control and management of crises. The transmission power of the new corona virus has drawn the attention of experts in the use of artificial intelligence...
متن کاملData-Driven Modelling: Concepts, Approaches and Experiences
Data-driven modelling is the area of hydroinformatics undergoing fast development. This chapter reviews the main concepts and approaches of data-driven modelling, which is based on computational intelligence and machine-learning methods. A brief overview of the main methods – neural networks, fuzzy rule-based systems and genetic algorithms, and their combination via committee approaches – is pr...
متن کاملArtificial intelligence-based approaches for multi-station modelling of dissolve oxygen in river
ABSTRACT: In this study, adaptive neuro-fuzzy inference system, and feed forward neural network as two artificial intelligence-based models along with conventional multiple linear regression model were used to predict the multi-station modelling of dissolve oxygen concentration at the downstream of Mathura City in India. The data used are dissolved oxygen, pH, biological oxygen demand and water...
متن کامل